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Abstract

Background.Major depressive disorder (MDD) is the leading cause of disability globally, with
moderate heritability and well-established socio-environmental risk factors. Genetic studies
have been mostly restricted to European settings, with polygenic scores (PGS) demonstrating
low portability across diverse global populations.
Methods. This study examines genetic architecture, polygenic prediction, and socio-environ-
mental correlates of MDD in a family-based sample of 10 032 individuals from Nepal with
array genotyping data. We used genome-based restricted maximum likelihood to estimate
heritability, applied S-LDXR to estimate the cross-ancestry genetic correlation between
Nepalese and European samples, and modeled PGS trained on a GWAS meta-analysis of
European and East Asian ancestry samples.
Results.We estimated the narrow-sense heritability of lifetime MDD in Nepal to be 0.26 (95%
CI 0.18–0.34, p = 8.5 × 10−6). Our analysis was underpowered to estimate the cross-ancestry
genetic correlation (rg = 0.26, 95% CI −0.29 to 0.81). MDD risk was associated with higher
age (beta = 0.071, 95% CI 0.06–0.08), female sex (beta = 0.160, 95% CI 0.15–0.17), and child-
hood exposure to potentially traumatic events (beta = 0.050, 95% CI 0.03–0.07), while neither
the depression PGS (beta = 0.004, 95% CI −0.004 to 0.01) or its interaction with childhood
trauma (beta = 0.007, 95% CI −0.01 to 0.03) were strongly associated with MDD.
Conclusions. Estimates of lifetime MDD heritability in this Nepalese sample were similar to
previous European ancestry samples, but PGS trained on European data did not predict MDD
in this sample. This may be due to differences in ancestry-linked causal variants, differences in
depression phenotyping between the training and target data, or setting-specific environmen-
tal factors that modulate genetic effects. Additional research among under-represented global
populations will ensure equitable translation of genomic findings.

Introduction

Major depressive disorder (MDD) is the leading cause of disability globally (Global Burden of
Disease Collaborative Network, 2020). While it is known to be influenced by both environmental
and genetic factors (Kendall et al., 2021) more work is needed to understand the relationship
between genetic factors and MDD in a wider range of human populations. Polygenic scores
(PGS), which aggregate the small effects of many common variants into a single index, have
been widely used to capture variation in genetic liability (Wray et al., 2021). PGS derived from
large-scale genome-wide association studies (GWAS) of depression have been found to be associated
with depression outcomes in a variety of clinical and population-based cohorts (Fang, Scott, Song,
Burmeister, & Sen, 2020; Halldorsdottir et al., 2019), but the vast majority of studies have been con-
centrated in samples of European ancestry (Peterson et al., 2019). A growing body of research has
demonstrated that Eurocentric PGS show poorer predictive performance in other populations, and
the expansion of PGS research to more diverse samples has been recognized as an urgent priority
(Kachuri et al., 2023; Martin et al., 2019; Wang, Tsuo, Kanai, Neale, & Martin, 2022).

Likewise, investigation of genetic factors from different populations with diverse environ-
mental circumstances is a high priority. It is well-established that exposure to early adversity
can increase the odds of lifetime depression (McKay et al., 2022), but it remains unclear how
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genetic factors combine with environmental factors to influence
depression risk across diverse social and economic settings. We
address these fundamental questions with newly available environ-
mental and genetic data from the Chitwan Valley Family Study
(CVFS). The CVFS is a large, population-based cohort with genomic
and carefully ascertained phenotypic data from over 10 000 indivi-
duals in Nepal. Though some studies have examined depression
PGS in East Asian samples (Amare et al., 2021; Avinun, Nevo,
Radtke, Brigidi, & Hariri, 2020; Bigdeli et al., 2017;
Pearson-Fuhrhop et al., 2014), the performance of depression PGS
in South Asian settings has been largely unexplored apart from
one study of South Asians living in the UK (Truong et al., 2024).
The CVFS also includes a wide range of community and family
environmental measures (Axinn & Pearce, 2006), and we have pre-
viously demonstrated that environmental exposures, including
childhood trauma and social support, are associated with risk of
MDD in the CVFS (Axinn et al., 2022; Benjet et al., 2020;
Hermosilla et al., 2022). Leveraging the CVFS, this study examines
the heritability and cross-ancestry genetic correlations for lifetime
MDD in Nepal. It also assesses the associations between polygenic
risk for depression and lifetime MDD, on its own and alongside a
potent environmental factor – namely childhood exposure to poten-
tially traumatic events – which may also influence MDD risk.

Methods

Sample

The CVFS features a general population sample of 151 neighbor-
hoods, fully representative of Western Chitwan in Nepal (Axinn,
Ghimire, & Williams, 2012). Years of previous research in Nepal
by this team, combined with years of living in Chitwan among
the study population, drove the innovative combinations of ethnog-
raphy and survey research that characterize the CVFS (Axinn et al.,
2012; Axinn & Pearce, 2006). The panel study was launched 1995,
following whole families across time, with the sample being
refreshed periodically to maintain full representation of the general
population. Across more than 20 years, multiple rounds of inter-
views have generated very high-quality data with high response
rates, low panel attrition, low levels of item missing rates, and
high reliability in measures (Axinn et al., 2012; Thornton,
Ghimire, & Mitchell, 2012). From 2016–2018 selected modules
from the World Mental Health Composite International
Diagnostic Interview (WMH-CIDI 3.0) were administered to the
full CVFS sample aged 15–59. The current sample was selected
to be representative of Western Chitwan in 2016. The response
rate for this survey was 93%, generating 10 714 completed inter-
views (Scott et al., 2021), with 10 308 also providing saliva-based
DNA samples. All procedures were approved by the University of
Michigan Institutional Review Board (HUM00104171) and by
the Nepal Health Research Council. Written or verbal informed
consent was obtained from all participants.

Phenotypic measures

Outcome: major depressive disorder (MDD)
As explained in detail elsewhere (Kessler & Üstün, 2004), the
WMH-CIDI is a fully structured diagnostic instrument adminis-
tered by lay interviewers using computer-assisted methods. To
create a Nepal-specific version of the WMH-CIDI measures, a
multiethnic team of CVFS researchers applied state-of-the-art sur-
vey methodology grounded in a mixed-method informed

understanding of the local setting (Scott et al., 2021). The initial
process took more than three years to produce clinically valid mea-
sures (Ghimire, Chardoul, Kessler, Axinn, & Adhikari, 2013).
Building on this accomplishment, the CVFS team then created a
setting-specific life history calendar (LHC) to pair with the
WMH-CIDI. This LHC approach adds measures of highly memor-
able personal and family events to the memory cues given to
respondents, creating personalized memory ‘anchors’ to facilitate
recall of the occurrence of psychiatric symptoms. This LHC-CIDI
method significantly improved measurement of lifetime experience
with mental disorder (Axinn et al., 2020). The LHC-CIDI was vali-
dated in the largest clinical validation ever conducted in Nepal,
demonstrating concordance equaling or exceeding the performance
of the WMH-CIDI in Europe and the United States (Axinn et al.,
2020). Here we use the Nepal-specific LHC-CIDI measure of life-
time occurrence of major depressive disorder (MDD).

Exposure: Childhood exposure to potentially traumatic events
(PTE)
Two binary exposure variables, being beaten badly by a parent or
caregiver and witnessing serious physical fights at home as a child,
collected by trained interviewers each through a single question
(e.g. ‘As a child, were you ever badly beaten up by your parents
or the people who raised you?’) as part of the WMH-CIDI were
combined into a single dichotomous variable of childhood expos-
ure to PTE (coded 1 for endorsement of either experience and 0
for no endorsement of these experiences).

Covariates: sociodemographic variables
Sociodemographic covariates included age (in years), sex, and eth-
nicity. While race/ethnicity designations are complex in Nepal,
the CVFS study population comprises six categories that capture
key aspects of variation: Brahmin/Chhetri; Dalits; Hill Janjati
(multiple ethnic groups of Tibetan origin, primarily Buddhist);
Terai Janjati (multiple plains ethnic groups, primarily of
Burmese decent); Newar; and other (primarily recent and tem-
porary migrants from India).

Genomic quality control and imputation

10 294 DNA samples from the CVFS cohort were genotyped
using the Illumina Infinium Global Screening Array and aligned
to the human genome reference build GRCh38. Genomic quality
control (QC) was performed using a high-performance cloud-
based pipeline called GWASpy (details available here: https://
github.com/atgu/GWASpy). A total of 76 samples were excluded
due to low genotyping call rate, inbreeding coefficient greater than
0.2, mismatch between self-reported and genetic sex, or more
than 10 000 Mendelian errors observed. Additionally, 32 samples
were excluded from further analysis which appeared to be dupli-
cates or members of a monozygotic twin pair. After genomic
quality control, a total of 10 032 unique samples were available
for subsequent analysis. Genetic principal components (PCs)
were calculated in an unrelated subset of the data, and the remain-
ing samples were projected onto this PC space. Visual inspection
of PC plots revealed no outliers. Of note, phasing and imputation
were performed using a new jointly called dataset of harmonized
Human Genome Diversity Project (HGDP) and 1000 Genomes
(1KG) Project samples (Koenig et al., 2023). In other words,
this reference panel is much more diverse and deeply sequenced
than existing imputation panels, making it more appropriate for
use in this diverse Nepalese cohort.
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Heritability estimation

Given the household-based sampling methodology, this study
contains related individuals. Therefore, we adopted a genome-
based restricted maximum likelihood framework for heritability
estimation using the Genome-wide Complex Trait Analysis
(GCTA) software version 1.94.1 (Lee, Wray, Goddard, &
Visscher, 2011; Yang, Lee, Goddard, & Visscher, 2011).
Following the method introduced by Zaitlen et al. (2013) GCTA
was used to calculate a dense genetic relatedness matrix
(GRMall) from all autosomal SNPs with minor allele frequency
greater than 0.01. A sparse GRM (GRMclose) was also constructed,
where all elements in the GRM less than 0.05 were set to zero,
thereby only capturing relatedness among close family members.
Subsequently, GCTA was used to simultaneously model the bin-
ary lifetime depression outcome as a function of GRMall or
GRMclose treated as random effects, along with age, sex, ethnicity,
and the first 20 genetic PCs fitted as fixed effects. This model thus
produces estimates of SNP-based heritability (h2snp) and narrow-
sense heritability (h2), an estimator which is comparable to that
from traditional pedigree-based study designs. h2snp is estimated
as the proportion of phenotypic variance explained by GRMall,
while h2 is the sum of h2snp and h2kin, the variance explained by
GRMclose. We subsequently fitted two additional models for
males and females independently. Since this is a population-based
sample and the prevalence of depression in Nepal is not well-
characterized, the sample prevalence was used when transforming
heritability estimates to the liability scale.

Cross-ancestry genetic correlation and GWAS

We used S-LDXR (Shi et al., 2021) to estimate the SNP-based cross-
ancestry genetic correlation between summary statistics from GWAS
of depression performed in a sample of European ancestry and a
GWAS of lifetime MDD conducted in the current Nepalese sample.
A generalized linear mixed model GWAS was performed using
GCTA (Jiang, Zheng, Fang, & Yang, 2021) in this samplewith depres-
sion case-control status as the outcome, fitting the GRMclose as a ran-
dom genetic effect along with sex, age, ethnicity, and the first 20 PCs
as fixed effect covariates. Summary statistics from a GWAS of strictly
defined lifetime MDD in a sample of 67 171 European ancestry par-
ticipants from the UK Biobank was used (Cai et al., 2020), as this
phenotype more closely resembles the definition used in the current
Nepalese sample. S-LDXR was run using the default parameters and
European and South Asian sub-samples from the 1000 Genomes
Project Phase 3 release were used as reference LD panels.

Polygenic scoring

PGS for depression were generated based on a meta-analysis of
two sets of publicly available GWAS summary statistics for
major depression, from Howard et al. (2019, 2018) in n = 500
199 individuals of European ancestry and Giannakopoulou
et al. (2021) in 98 502 individuals of East Asian ancestry, which
were combined using the inverse variance weighted approach
implemented in METAL (Willer, Li, & Abecasis, 2010) prior to
score generation. PRS-CS (Ge, Chen, Ni, Feng, & Smoller,
2019), a Bayesian polygenic scoring method, was used to generate
weighted SNP effect estimates for major depression, which were
then scored using PLINK v1.9. Although our primary analysis
was based on the continuous PGS, we also divided the continuous
PGS into categorical tertiles reflecting relatively low, intermediate,
and high polygenic risk, for secondary analyses.

Polygenic score analyses

Building on our heritability analyses, we fitted a series of sequen-
tial mixed models using GCTA with lifetime MDD as the out-
come, where the baseline model (M0) included GRMall and
GRMclose as random effects and the first 20 PCs as fixed effects.
Models M1 to M3 sequentially updated the preceding model to
include additional demographic variables: age, sex, and ethnicity.
Model M4 built on model M3 by including the scaled continuous
PGS as a fixed effect. Model M5 subsequently included childhood
PTE, while model M6 also included a term for the multiplicative
interaction between PGS and childhood PTE. As supplementary
analyses, Models M4–M6 were refitted using categorical PGS ter-
tiles. The unique phenotypic variance explained (R2) on the
observed scale, controlling for variables included in prior models,
was estimated for each fixed effect as the relative change in pheno-
typic residual variance (Ve) after inclusion of a given fixed effect
(e.g. the R2 for age is calculated as (VeM0–VeM1)/VeM0). These
estimates were transformed to the liability scale using the method
proposed by Lee, Goddard, Wray, and Visscher (2012) assuming
the sample prevalence (15%) as the population prevalence.

Results

Sample characteristics

Following genomic QC filtering, a total analytic sample of 10 032
individuals was available for modeling with complete data on
MDD status, demographic covariates, and childhood PTE.
Sample characteristics are reported in Table 1. Of the 10 032 par-
ticipants, 55% were female and 43% were of Brahmin ethnicity,
with a mean age of 35.4 years (S.D. = 12.4). Fifteen percent of

Table 1. Analytic sample characteristics

Analytic sample
(N = 10 032)

N %

Median age in 2019 (median [IQR])

33.0 [25.0–44.0]

Sex assigned at birth

Male 4517 45.0

Female 5515 55.0

Ethnicity

Brahmin/Chhetri (Hindu) 4334 43.2

Hill Janajati (Tibetoburmise) 1988 19.8

Dalit (Hindu) 1242 12.4

Newar 603 6.0

Terai Janajati (Tibetoburmise) 1865 18.6

DSM-IV Diagnosis of MDD (with hierarchy)

Non-case 8489 84.6

Case 1543 15.4

Childhood exposure to PTE (%)

Unexposed 8696 86.7

Exposed 1336 13.3
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the sample met lifetime diagnostic criteria for MDD. The lifetime
prevalence of MDD among women in this sample was 22% and
among men was 7%. MDD cases were on average 5.9 years
older than non-MDD cases.

To further situate the genetic ancestry of this sample among
global populations, we performed principal component analysis
within the unrelated set of 1000 Genomes Phase 3 samples and
projected samples from the current study onto this PC space
(Fig. 1a). We also estimated genetic PCs only among East and
South Asian ancestry samples from 1000 genomes, and subse-
quently projected the CVFS samples onto this space (Fig. 1b).
As shown in Fig. 1, the CVFS Nepalese samples lie on a con-
tinuum between East Asian samples and South Asian samples
across the first two principal components, with some samples
clustering more closely to samples of East Asian ancestry and
some more closely resembling South Asian ancestry samples.
This is consistent with findings from previous studies (Arciero
et al., 2018; Xing et al., 2010).

Heritability

GCTA analyses indicated that lifetime MDD in this Nepal-based
cohort was significantly heritable. Figure 2 plots heritability esti-
mates from the current Nepalese sample with those from previous
studies in majority European ancestry samples (Fernandez-Pujals
et al., 2015; Polderman et al., 2015). On the liability scale, the
narrow-sense h2 of lifetime MDD was estimated at 0.26 (95%
CI 0.18–0.34, p = 8.5 × 10−6). We also report h2 estimates on the
liability scale for several alternative possible assumed prevalences
ranging from 5% to 25% (online Supplementary Table S1). Point
estimates for narrow-sense h2 on the liability scale were higher in
both the female-only (0.35, 95% CI 0.21–0.49, p = 2.0 × 10−4) and
male-only (0.45, 95% CI 0.20 to 0.70, p = 1.2 × 10−2) sub-sample.

Although the method of Zaitlen et al. (2013) produces unbiased
estimates of h2, the estimates of individual variance components
attributable to h2snp and h2kin have been found to be severely mis-
estimated (Evans et al., 2018). Thus, we only report estimates of
the overall h2.

GWAS and cross-ancestry genetic correlation

S-LDXR estimated a genetic correlation of 0.26 (95% CI −0.29 to
0.81) between the Nepalese lifetime MDD GWAS and the
European lifetime MDD GWAS. Our current sample was under-
powered to identify a statistically significant cross-ancestry genetic
correlation with lifetime MDD using GWAS summary statistics.

Associations between polygenic risk, childhood PTE, and
lifetime MDD

Regression coefficients for fixed effects estimated from the final
saturated model (M6) are shown in Table 2, while the sequential
variance explained by each added predictor is provided in Table 3.
Sex explained the largest proportion of variance in liability to
depression (12.0%, 95% CI 10.8–13.2), followed by age (7.0%,
95% CI 5.9–7.8%) and childhood PTE (0.6, 95% CI 0.3–0.9%).
The remaining fixed effect predictors, including ethnicity, the
continuous PGS, and the interaction between PGS and childhood
PTE, either resulted in a slightly worse model fit after inclusion or
had a 95% confidence interval that overlapped with zero h2snp.
Results were consistent when examining the PGS categorically
by tertiles, with PGS tertiles accounting for only 0.04% (95% CI
−0.04 to 0.12%) of variance in MDD liability, and its interaction
with childhood PTE explaining 0.64% (95% CI 0.33–0.95%). As a
sensitivity analysis, we also tested the performance of a model
where the PGS was modeled with only genetic PCs as covariates.

Figure 1. Genetic ancestry of the current CVFS sample.
Note. This figure situates the current Nepalese sample from the Chitwan Valley Family Study (CVFS) in the context of continental superpopulations using samples
from the 1000 Genomes Project Phase 3 release. We performed principal components analysis across all 1000 Genomes samples (Panel a) and within the subset of
samples with East and South Asian ancestry (Panel b). All samples (including those from CVFS) were subsequently projected onto the principal component space
and plotted. The 1000 Genomes project clusters samples into the following superpopulations: African (AFR), Admixed American (AMR), East Asian (EAS), European
(EUR) and South Asian (SAS).
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This yielded an effect size very similar to, and statistically indistin-
guishable from, the estimate when additionally controlling for age,
sex, and ethnicity.

Although the mixed model framework maximizes the amount
of available data by explicitly modeling relatedness, there may be a
concern that the random effects modeled by the GRM overlap
with the effects captured by the PGS, resulting in larger standard
errors and reduced power to detect an effect of the PGS. Thus, we
performed a sensitivity analysis, using linear regression on binary
case-control status to model the effects of PGS while controlling

for age, sex, and PCs in an unrelated (less than 2nd degree) subset
of 4606 subjects from the full dataset. Results from this analysis
were highly consistent with the mixed model results, with the
PGS effect estimated as 0.005 (95% CI −0.003 to 0.012), nomin-
ally higher than the mixed model effect estimate, but statistically
indistinguishable.

Discussion

In this study, we examined genetic factors contributing to major
depression risk in an ancestrally diverse, household-based sample
of 10 032 individuals with high relatedness in Western Chitwan,

Table 2. Estimated effects of demographics, polygenic scores, and childhood
trauma on lifetime MDD risk

Coefficient Beta S.E.
95% Confidence

Interval

Intercept 0.056 0.011 0.034–0.078

PGS 0.004 0.004 −0.004 to 0.012

cPTE 0.050 0.010 0.029–0.070

PGS × cPTE 0.007 0.010 −0.013 to 0.027

Age 0.071 0.003 0.064–0.077

Sex (Female) 0.160 0.007 0.146–0.173

Ethnicity (Dalit) 0.040 0.029 −0.017 to 0.098

Ethnicity (Hill Janajati) 0.001 0.020 −0.039 to 0.040

Ethnicity (Newar) −0.026 0.030 −0.085 to 0.033

Ethnicity (Terai Janajait) 0.001 0.029 −0.055 to 0.057

Note. This table shows regression coefficient estimates from a linear mixed model fitted
using the GCTA software with binary lifetime MDD status as the outcome and all predictors
as covariates. Two random genetic effect structures were fitted simultaneously: the full
genetic relatedness matrix (GRM) and a sparse GRM where pairwise entries less than 0.05
were set to zero. This model also included the first 20 genetic principal components as fixed
effect covariates. All continuous predictors were mean-centered and standardized to have
unit variance prior to model fitting. cPTE, childhood exposure to potentially traumatic event;
PGS, polygenic score.

Figure 2. Estimated heritability of MDD in Nepal compared to previous European studies.
Note. The current study estimated pedigree-based heritability using the GCTA software in 10 032 individuals from Nepal. Twin-based heritability estimates were
obtained from the largest meta-analysis of depression (Polderman et al., 2015) including 178 789 twin pairs in the combined male-female analysis, with the major-
ity of contributing studies performed in samples of European ancestry. European ancestry pedigree-based heritability estimates were obtained from the Scottish
Family Health Study, which included 20 198 individuals (Fernandez-Pujals et al., 2015).

Table 3. Sequential variance explained in lifetime MDD

Coefficient DR2liability S.E.
95% Confidence

Interval

Age 6.8 × 10−2 4.9 × 10−3 5.9 × 10−2–7.8 × 10−2

Sex 1.2 × 10−1 6.1 × 10−3 1.1 × 10−1–1.3 × 10−1

Ethnicity −1.6 × 10−4 NA NA

PGS 2.0 × 10−4 2.8 × 10−4 −3.5 × 10−4 to 7.4 × 10−4

cPTE 6.4 × 10−3 1.6 × 10−3 3.3 × 10−3–9.5 × 10−3

PGS × cPTE −3.9 × 10−5 NA NA

Note. Sequential linear mixed models were fit using GCTA with lifetime major depression
status as the outcome variable, building on a baseline model where random effects
included the full genetic relatedness matrix (GRM) and a sparse GRM where pairwise entries
less than 0.05 were set to zero, while fixed effects included the first 20 genetic principal
components. Age, sex, ethnicity, depression polygenic score (PGS), childhood exposure to
potentially traumatic event (cPTE), and their multiplicative interaction were included as
fixed effects in a stepwise manner. The unique phenotypic variance explained (R2) on the
observed scale, controlling for variables included in prior models, was estimated for each
fixed effect as the relative change in phenotypic residual variance after inclusion of a given
fixed effect. These were transformed to variance explained on the liability scale (R2liability )
assuming a population prevalence of 15%. Since the inclusion of ethnicity and PGS × cPTE
terms resulted in a slightly worse fit, it is not meaningful to compute standard errors or
confidence intervals.
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Nepal. 15% of the sample met diagnostic criteria on a validated
interview survey for lifetime MDD, comparable to that seen in
US samples (Kessler et al., 2003). Lifetime MDD showed statistic-
ally significant narrow-sense heritability; however, polygenic
scores for depression trained on large European and East Asian
ancestry GWAS did not significantly predict lifetime MDD status
in this Nepalese sample. Demographic variables and environmen-
tal exposures explained a far greater proportion of variance in
liability to lifetime MDD in the current sample.

Genetic contributions to depression are not well characterized
outside of European ancestry populations. In this Nepalese sam-
ple, lifetime MDD was found to have a statistically significant
narrow-sense heritability, explaining 26% of variance in risk for
MDD on the liability scale. This estimate is slightly lower but
comparable to previously reported heritability estimates of life-
time MDD from European ancestry twin and family-based sam-
ples (Fig. 2), which range from 30%-50% (Kendall et al., 2021)
indicating a substantial genetic basis. In addition, it is similar to
the liability-scale SNP heritability (26%) reported from
CONVERGE, a cohort of East Asian ancestry (Giannakopoulou
et al., 2021), though the latter was estimated based on severe
recurrent depression at a lower prevalence.

In contrast, depression PGS trained on a meta-analysis of two
large GWAS from European and East Asian ancestry samples per-
formed poorly in predicting lifetime MDD in this sample. Limited
previous studies have yielded mixed evidence on the predictive
power of PGS for depression trained on European GWAS for
depression outcomes in non-European populations: PGS associa-
tions, albeit with lower variance explained, have been observed for
depressive symptoms in a cohort of over 3000 pregnant indivi-
duals in Peru (Shen et al., 2020) or for combined anxiety/depres-
sion status among individuals of African and Hispanic ancestry in
US health systems (Coombes et al., 2023), though a large sample
of US veterans with African ancestry reported no such association
(Bigdeli et al., 2022). While it is known that PGS show reduced
effect sizes when applied to samples that differ in ancestry from
the training sample (Wang et al., 2022), our observed discrepancy
may have a number of possible explanations. First, it could reflect
differences in the underlying genetic architecture of MDD across
ancestral populations. We attempted to quantify these differences
using S-LDXR, a method for estimating cross-ancestry genetic
correlation, which suggested only a modest correlation (rg =
0.26) in common genome-wide factors for lifetime depression
across European and Nepalese samples, although we were under-
powered to make precise estimates. This is consistent with a pre-
vious GWAS that revealed only a partial overlap (11%) between
the genetic loci associated with major depression in a European
sample and those in individuals of East Asian ancestry
(Giannakopoulou et al., 2021). Second, low cross-ancestry PGS
performance could reflect differences in how lifetime MDD is
measured and reported across settings, including the experience
and expression of specific symptoms. However, the Nepal-CIDI
instrument has been clinically validated (Axinn et al., 2020).
Importantly to note, a large proportion of samples used to train
our PGS came from a GWAS which used a shallow definition
of depression (Howard et al., 2018), which have been shown to
have lower heritability and decreased specificity (Cai et al.,
2020). Third, different factors may contribute to MDD risk in
the Nepalese setting; for example, this population had higher
levels of exposure to poverty and violent events relative to other
settings assessed with the CIDI. At the same time, recent studies
document a lower population-based prevalence of MDD and

other disorders in the CVFS compared to more wealthy
European diaspora settings (Scott et al., 2021). The sources of
this ‘resilience’ remain to be documented, but rates of psychiatric
disorder are steadily rising across birth cohorts in this study sam-
ple, possibly due to higher rates of schooling, work for pay, and
geographic moves for work (Scott et al., 2021). As social life in
Nepal becomes more similar to other settings represented in
our GWAS training data, the PGS may also become a stronger
predictor of MDD.

Exposure to childhood trauma, a robust predictor of depres-
sion (McKay et al., 2022), was statistically significantly associated
with lifetime MDD in this sample, although it explained modest
variance compared to the demographic factors. Factors that
most strongly explained lifetime MDD status included sex and
age, with females and older participants reporting higher rates
of lifetime MDD. Stratified heritability analyses suggested that
the heritability of lifetime MDD liability may be higher in
males than females, although the difference between the two esti-
mates was not statistically significant. Previous findings in
European samples (Polderman et al., 2015) have found heritabil-
ity to be higher among females than males. However, our study
appears to be underpowered to detect sex differences in heritabil-
ity, since the 95% confidence interval for the male-only
heritability estimate (0.20–0.70) overlapped with those from
both the combined sample estimate (0.18–0.34) and the
female-only estimate (0.21–0.49). One explanation for higher
point estimates in this sample when males and females are mod-
eled separately is that the genetic factors influencing depression
liability may be different for males and females, introducing
additional heterogeneity in effects and deflating heritability
estimates when modeled together. Indeed, there is some evidence
from family studies in European samples that genetic risk factors
differ between males and females (Kendler, Gardner, Neale, &
Prescott, 2001; Kendler, Gatz, Gardner, & Pedersen, 2006).
Another explanation may be indirect parental genetic effects
that differ between mothers and fathers and can bias GCTA
estimates of heritability (Barry et al., 2023). One recent study
has provided preliminary evidence for parent-specific genetic
nurture effects in samples of European ancestry (Tubbs &
Sham, 2023).

Strengths of this study include, first, its focus on a genetically
characterized population-based sample in Western Chitwan in
Nepal, addressing the gap of limited research in non-European
ancestry populations (Martin et al., 2019; Wang et al., 2022). To
date, there have only been a handful of psychiatric genetics studies
in South Asian populations (Periyasamy et al., 2019) and none
focused on MDD. Second, this study leverages a highly unique
cohort where depression has been rigorously ascertained, with
detailed and culturally validated diagnostic assessment of lifetime
MDD using life history calendar methods to ensure recall in the
context of a long-term, household-based longitudinal study,
which is usually challenging to obtain in genomic studies.
Third, because it is from a whole-family longitudinal study, this
population-representative sample captured large numbers of
related individuals to maximize power for heritability estimation.

This study also had several limitations. Notably, while one of
the largest of its kind, this sample was still underpowered for
detecting smaller polygenic effects or estimate statistically signifi-
cant cross-ancestry genetic correlations, or for identifying poten-
tial sex differences in the heritability of MDD in this Nepalese
population. This points to the need to collect more data to enable
more well-powered genetic analyses of psychiatric phenotypes in
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South Asia. We also relied on GWAS summary statistics derived
from European and East Asian ancestry populations, which are
the largest available but less likely to be directly transferable to
this population. Additionally, we examined a relatively simple
measure of childhood trauma as a candidate exposure, measured
retrospectively, and lifetime MDD is likely to be associated with a
wider range of environmental factors (Köhler et al., 2018) that
may benefit from more comprehensive study in this population
in conjunction with genetic factors.

Conclusion

In this unique cohort of 10 032 individuals in Nepal, we find evi-
dence that lifetime MDD has a substantial genetic basis in this
population, which partially overlaps with the genetic architecture
of MDD in previous European ancestry studies. However, the low
genetic correlation for MDD between this sample and European
samples (rg = 0.26) and the limited predictive performance of
PGS derived from European and East Asian studies highlight
the need for expanded genetic studies in South Asian populations.
Demographic variables and specific environmental exposures
such as childhood trauma emerged as more influential risk factors
for lifetime MDD. Future research should focus on characterizing
the genetic architecture of MDD in settings like Nepal and iden-
tifying population-specific risk factors for depression and other
common psychiatric disorders. Findings underscore the import-
ance of considering genetic, environmental, and sociocultural fac-
tors to enhance our understanding of MDD in diverse
populations.
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